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Methods for resolving the three-dimensional (3D) microstructure of the brain typically start by thinly slicing and
staining the brain, followed by imaging numerous individual sections with visible light photons or electrons. In
contrast, X-rays can be used to image thick samples, providing a rapid approach for producing large 3D brain
maps without sectioning. Here we demonstrate the use of synchrotron X-ray microtomography (�CT) for
producing mesoscale (�1 �m 3 resolution) brain maps from millimeter-scale volumes of mouse brain. We
introduce a pipeline for �CT-based brain mapping that develops and integrates methods for sample preparation,
imaging, and automated segmentation of cells, blood vessels, and myelinated axons, in addition to statistical
analyses of these brain structures. Our results demonstrate that X-ray tomography achieves rapid quantification
of large brain volumes, complementing other brain mapping and connectomics efforts.

Key words: Automated segmentation; cell counting; electron microscopy; neocortex; neuroanatomy; X-ray
microtomography

Introduction
Visualization and quantification of the three-dimen-

sional (3D) microstructure of the brain is integral for con-
straining models of neural computation, and further
understanding how anatomy changes as a consequence

of aging and disease (Tsai et al., 2009; Lichtman and
Denk, 2011). Traditional brain mapping methods have
relied on measurements from small numbers of neurons
within a limited number of regions (Yanagihara et al.,
1987; Jasmin et al., 1997; Timbie and Barbas, 2015).
Recent technologies, in contrast, are rapidly scaling up in
their ability to map large neural volumes and eventually
interrogate entire brains (Li et al., 2010; Gong et al., 2013;
Economo et al., 2016). In all of these efforts, methods for
providing high-throughput and unbiased quantification of
the brain’s structure are critical.

Although conventional neuroanatomical methods re-
main essential in neuroscience, these approaches are
methodologically overwhelming. For example, light and
electron microscopy (EM) methods require large volumes
of tissue to be sectioned with micrometer-scale precision,
after which these delicate samples must be imaged,
stitched, and aligned to reconstruct a full brain volume
(Kasthuri et al., 2015; Richardson and Lichtman, 2015).
The slicing and stitching requirements of these methods
inevitably lead to mechanical distortion within the thou-
sands of samples collected, thereby complicating the
reconstruction of the volume. It is only once these images
are integrated that cellular and vascular architecture of the
brain can be reconstructed at the 3D level. Acquiring
high-resolution brain maps using these traditional ana-
tomic methods therefore remains a meticulously demand-
ing and time-intensive endeavor.

More recently, methods such as serial two-photon
tomography (Oh et al., 2014), CLARITY (Chung and Deis-
seroth, 2013; Richardson and Lichtman, 2015), and ex-
pansion microscopy (Chen et al., 2015) have been used to
visualize details across large neural volumes and in some
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Significance Statement

Reconstructing neuroanatomical samples in three dimensions is challenging, as traditional methods require fine
sectioning of tissue and alignment of these sections into a 3D volume. In this article, we present a pipeline for
quantifying neuroanatomy with synchrotron X-ray microtomography (�CT), a method that achieves micron
resolution over thick millimeter-scale intact samples. As brain tissue can be imaged with �CT without damaging
the integrity of the sample, electron microscopy was applied to survey higher-resolution structures. We introduce
this data analysis pipeline for blood vessel segmentation and cell detection, as well as producing estimates of
cell densities and spatial relationships among cells and blood vessels. These methods promise efficient imaging,
reconstruction, and analysis of brain structures using �CT.
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cases, whole brains. These and other anatomic methods
typically introduce external agents (i.e., histologic stains,
injected tracers, hydrogels) to define cytoarchitecture or
map projections of specific populations of cells (Kreutz-
berg, 1984; Madisen et al., 2010). Although such ap-
proaches have proven incredibly powerful in revealing
subsets of brain circuitry with high degrees of specificity
(Chung and Deisseroth, 2013; Economo et al., 2016),
approaches that provide exhaustive and unbiased visual-
ization of complete neural structures (i.e., all neurons and
vasculature within neocortex) are needed to complement
these approaches (Mitra, 2014).

EM is presently the gold standard for unambiguous and
dense reconstructions (Lichtman and Denk, 2011) of neu-
roanatomy. But even the newest generation of EM auto-
mation (Briggman and Bock, 2012), combined with high-
speed EM imaging (Eberle et al., 2015), is limited to
investigations of smaller (�mm3) volumes of brain tissues
by the enormous size of data required to reconstruct even
small volumes (Mikula and Denk, 2015). Currently, imaging a
cubic millimeter of brain tissue at 20-nm-voxel resolution
takes �3 months (Eberle et al., 2015) of continuous imaging
with multimillion-dollar multibeam scanning electron micro-
scopes, with the resulting data requiring �2 petabytes of
storage. At these rates, imaging and reconstructing a single
cubic millimeter of brain tissue (much less multiple samples
from many brains) with EM remains a significant hurdle.
Approaches that allow primary mesoscale mapping with
subsequent serial EM of the same samples could provide
the synaptic resolution of EM in the context of mesoscale
maps of large volumes or entire brains.

X-ray microtomography (�CT) provides a largely un-
tapped opportunity for producing dense mesoscale brain
maps, in a manner compatible with higher-resolution
methods such as EM and nanoCT (De Andrade et al., 2016).
Specifically, X-rays penetrate millimeter-scale brain volumes
with isotropic micron resolution, thereby removing the need
for sectioning tissue (Mizutani et al., 2010a, 2010b; Mizu-
tani and Suzuki, 2012; Zhang et al., 2015; Hieber et al.,
2016). Sample integrity and quality of consequent recon-
structions therefore remain uncompromised relative to
other large-scale visualization methods (Bushong et al.,
2015).

Synchrotron-based �CT offers significant photon flux
and thus provides efficient acquisition of large brain vol-
umes, two orders of magnitude faster than benchtop �CT
systems for neuroscience (Arillo et al., 2015). These ad-
vantages have resulted in a quickly growing field of syn-
chrotron X-ray in neuroscience. Synchrotron sources
have now been used successfully in the visualization of
cerebrovasculature of a whole brain at 6-�m resolution
(Zhang et al., 2015), to count cells in cerebellum (Hieber
et al., 2016), and to visualize neural networks in spinal
cord (Fratini et al., 2015). At present, however, syn-
chrotron-based �CT has yet to be adapted to meet the
demands of large-scale brain-mapping efforts. Presently,
there are no accessible pipelines which provide methods
for transforming X-ray projection images to segmented
volumes for the quantification for mesoscale anatomy.

In this article, we introduce a pipeline for rapidly quan-
tifying dense mesoscale neuroanatomy using synchrotron
�CT. We demonstrate that samples fixed with aldehydes,
stained with heavy metals, and embedded in plastic can
be imaged with high-energy synchrotron radiation. The
resulting anatomic datasets provide both exceptional iso-
tropic resolution (�1 �m3) and contrast, permitting iden-
tification of the 3D architecture of neurons and glial cell
bodies, vasculature, segments of large apical dendrites,
and myelinated axons. After X-ray imaging, a segment of
the large millimeter-scale sample is sectioned and imaged
using automated EM, with resulting images displaying
excellent preservation of tissue ultrastructure and
straightforward correspondence (efficient coregistration)
between X-ray and EM datasets. To quantify mesoscale
neuroanatomy, we developed an open-source pipeline for
X-ray data analysis known as X-BRAIN (X-ray Brain Re-
construction, Analytics and Inference for Neuroanatomy;
nerdslab.github.io/xbrain). This set of tools permits effi-
cient blood vessel and axonal segmentation, cell detec-
tion, and statistical analyses of X-ray image volumes. �CT
in combination with image parsing techniques offers an
effective path from brain specimens to mesoscale brain
maps.

Materials and Methods
Sample preparation

All animal procedures described were performed in
accordance with institutional animal care committee reg-
ulations. The neocortical sample was prepared using
techniques originally developed for large-volume EM.
Specifically, an adult female BALB/c mouse was anesthe-
tized with sodium pentobarbital (40 mg/kg) before being
transcardially perfused. The vasculature was flushed us-
ing 0.1 M cacodylate buffer followed by fixatives (2%
paraformaldehyde and 4% glutaraldehyde). The brain was
then dissected from the skull, postfixed overnight at 4°C,
and sliced on a vibratome at a thickness of 500 �m. After
dissection of the somatosensory cortical sample, the tis-
sue was stained with heavy metals in anticipation of
subsequent electron microscopy (“ROTO”; Tapia et al.,
2012), dehydrated, and embedded in plastic Epon. Ana-
tomical landmarks were used to verify the excised sample
was within the range of somatosensory cortex.

Confirmation of cellular structures with EM
After sample preparation, we used synchrotron-based

�CT to image 3D volumes of brain tissue at micron iso-
tropic resolution. We subsequently made ultrathin sec-
tions of this tissue using an established approach for
automated EM (Kasthuri et al., 2015) to collect low-
resolution EM micrographs (�100-nm pixel resolution). In
these low-resolution images, we identified equivalent cell
bodies and vasculature localized in the corresponding
volume of X-ray data. Fine-resolution EM micrographs
(3-nm pixel resolution) were then collected to identify
synapses in the EM volumes. Because these labeling
approaches are species independent (i.e., they do not
require using transgenic animals), we can apply this ap-
proach to human and other brain biopsies.
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X-ray data collection and reconstruction
To collect the �CT dataset described here, we used the

2-BM beamline at the Advanced Photon Source (APS).
Interested parties who wish to acquire their own X-ray
data from the APS through either 2-BM or the 32-ID
beamline can submit a General or Partner User Proposal
(https://www1.aps.anl.gov/Users-Information/About-
Proposals/Proposal-Types for further information). The
dataset in this paper was collected with exposure times of
0.1 s per projection and 3000 projections at 30 keV. The
2-BM beamline was equipped with a 10-�m-thick Lu-
AG:Ce scintillator to convert propagation-enhanced X-ray
wave into visible light. A microscope objective magnified
this signal onto a visible light-scientific CMOS camera
(pco.edge 5.5 camera, 2560 � 2560 pixels). When using a
10� objective, this yielded a projection with a pixel size of
0.65 �m. We used propagation-based phase contrast
X-ray imaging to obtain high-contrast tomograms of a
millimeter-sized region of plastic-embedded and metal-
stained mouse neocortex. Imaging a 1-mm 3 volume at
0.65 �m isotropic took �6 min and required no postac-
quisition volume alignment or registration processing. The
X-ray energy bandwidth was � 300 eV, which means that
the data are largely free of the “beam hardening” effects
that otherwise complicate medical imaging using labora-
tory X-ray sources. We are thus able to obtain data �130
times faster than with laboratory sources, and with poten-
tially higher image quality.

Reconstruction of 3D volumes
Datasets were collected in hierarchical data format

(HDF) using the Data Exchange schema developed for
synchrotron data (De Carlo et al., 2014). Data processing
and image reconstructions were performed using the To-
moPy toolbox, an open-source Python package, devel-
oped at the APS for tomographic data analysis (Gürsoy
et al., 2014). We first normalized the projection images
with the incident X-ray measurements to suppress arti-
facts originating from imperfections in the detection pro-
cess. A wavelet-Fourier filter (Münch et al., 2009) was
used to further suppress these artifacts with 10 wavelet
levels and an offset suppression value of 2. We used a
Paganin-type single-step phase retrieval algorithm to re-
trieve the phase of the transmitted X-ray signal (Paganin
et al., 2002). The location of the rotation center was
estimated either automatically, using an optimization ap-
proach minimizing the entropy in reconstructions (Donath
et al., 2006), or manually, if signal-to-noise (SNR) levels
were high. The tomographic reconstructions were per-
formed using the GridRec algorithm (Dowd et al., 1999),
which is a fast implementation of the conventional
filtered-back-projection method (Kak and Slaney, 1988).

Preprocessing of image stacks
Each image reconstructed in TomoPy is 2560 � 2560

pixels (0.65 �m isotropic) and is initially stored with 32-bit
float precision. We used the multiple image processor tool
in Fiji (ImageJ; Schindelin et al., 2012) to color-correct the
images by applying automatic contrast enhancement to
the image volume and converting the bit depth of each
�CT image to 8 bits. By computing the average number of

bits of information in each pixel of the original image, we
confirmed that an 8-bit depth was sufficient to capture the
information in the �CT stack. Visual inspection also con-
firmed this choice of bit depth, with no visible loss of data
quality due to quantization. We then applied an automatic
contrast enhancement filter to each image in the stack in
Fiji. After reducing the bit depth and masking the data, the
dataset was reduced by a factor of 10 (95 GB to 10 GB).

Volume of the analyzed sample
The image volume that we analyzed in this paper is of

size 1400 � 2480 � 1547 voxels, which corresponds to a
volume of size 910 � 1612 � 1005 �m (1.474 mm3). At
this scale, we can adequately test our methodology and
find large-scale results that correspond well with previous
studies (Tsai et al., 2009).

Evaluation metrics
To compute interrater reliability and evaluate the per-

formance of our automated methods, we developed tools
to compare segmentations at both pixel and object level.
Detected pixels/objects that do not appear in the manual
segmentation are counted as false positives, and manu-
ally identified pixels/objects not found by the automatic
segmentation algorithm result in false negatives (misses).
In all of our evaluations, we compute precision (p), recall
(r), and f� score as

f� � �1 � �2� pr
�2p � r

,

where we set � � {1,2}. When evaluating the performance
of our methods for detecting cells (object-level errors), we
compute matches between two sets of centroids by iden-
tifying cell pairs in different segmentations that are near-
est neighbors. If the matching centroids are within a fixed
distance (10 �m) from one another, we label them a match
and remove both cells from the dataset to avoid duplicate
assignments. The matching process iterates until all pos-
sible matches are found, and precision and recall metrics
are computed. For cell detection, we computed the f1
score, as it places equal weight on precision and recall.
However, in the case of the pixel-level segmentation of
vessels, we observed that optimizing the f2 score pro-
duced more accurate results (as confirmed by visual in-
spection performed by a trained annotator; see details
below).

Manual annotations and ground truthing
To obtain a ground truth dataset to quantify the perfor-

mance of our algorithms and assess interrater reliability,
we instructed a total of four trained annotators (A0, A1,
A2, A3) and five novices to label different subvolumes (V0,
V1, V2, V3) of our image dataset using ITK-Snap (Yush-
kevich et al., 2006). To denote each annotation, we list the
annotator and volume; for instance, V2-A0 refers to A0’s
annotation of V2. When two annotator IDs are used, e.g.,
V2-A12, this implies that both annotators (A1 and A2)
iteratively refined a common annotation. Most of the sub-
volumes were selected to produce significant variability
compared with previously selected subvolumes, except
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for V3. Because V3 serves as a final test set, we had an
external party blind to the sample’s properties randomly
select a subvolume to be used as a held-out test volume
(V3) at a location unknown to the authors.

Interrater reliability
Two of the trained experts (A0 and A1) and the five

novices labeled cells and vessels in V1, a 195 � 195 �
65-�m cube of data (300 � 300 � 100 voxels). Annotator
A0 was instructed to produce a saturated reconstruction
of V1, where all cells and vessels (and their boundaries)
were fully labeled. A1 produced a saturated segmentation
of a subvolume of V1, denoted V0. To estimate interrater
reliability across annotators, we computed the voxel-wise
precision and recall between V0-A0 and V0-A1, which we
computed to be (p,r) � (0.93,0.58) for cell bodies and
(p,r) � (0.99,0.29) for vessels. Although precision is high in
both cases, the recall is much lower. This is because A1
produces an underestimate of A0’s labels; we tested this
by dilating A1’s labels until we maximized the f1 score
between the two annotations (A0 is considered ground
truth). In this case, we obtain a precision (p,r) � (0.84,0.76)
for cell bodies and (p,r) � (0.85,0.73) for vessels.

We then computed the agreement between these an-
notators in detecting cell centroids. We first processed
each segmentation to ensure that each cell is represented
by a distinct cluster of pixels, then applied a connected
component algorithm to estimate the centroid of each
cell. Centroids were then matched across the two anno-
tations to compute object-level precision and recall.
When ignoring detections along the boundaries of the
volume, no cells were identified by A1 that were not
identified by A0, and only one cell was identified by A0
that was not identified by A1. Thus, interrater reliability is
nearly perfect when annotators were asked to identify cell
centers.

To quantify the time required to label the centroids of
cell bodies, we recruited five subjects with no prior ana-
tomic labeling experience to identify the centers of cell
bodies in three dimensions. Each subject was instructed
to label as many cells as possible in 30 min. The average
number of cells that these subjects labeled was 51.2
(median was 62). These results suggest that a novice can
accurately (as confirmed by A0) label the centroids of
�100 cells in 1 h. In practice, we find that it takes all
expert annotators (A0, A3) �5 h to reliably label all cell
centers in a 100-�m3 volume. From estimates of the cell
density in mouse neocortex, we expect �120,000 cells
per cubic millimeter. Therefore, manual annotation of ev-
ery cell in a similar 1-mm3 sample would require an esti-
mated 1200 person-hours, or an single anatomist working
24 h/d over the course of 50 days.

Computing the effective image resolution
To compute the effective resolution of our imaging

system, we computed the signal and noise power spectra
(SPS and NPS) by taking a series of 256 xy transverse
planes (i.e., normal to X-ray source) and vertical planes
(virtual slices) and averaging their power spectra to mea-
sure the resolution parallel to and perpendicular to the
rotation axis. We then fitted a second-order polynomial to

the SPS to account for artifacts introduced during phase
retrieval. When measuring the gap between the smoothed
power spectra and the NPS, the signal is five times higher
than the noise (following the Rose criterion for detectabil-
ity; Rose, 1946) at a spatial frequency of 0.383 �m–1 in xy
and 0.525 �m–1 in xz. This indicates a half-period spatial
resolution of 1.31 �m in xy and 0.95 �m in xz.

Computing SNR
To estimate the intrinsic difficulty of separating cells

from their background, we calculated the ratio of the
intensity between cells and their exteriors. To do this, we
sampled 10 cells every 25 slices (15.6 �m) in each of the
three manually annotated volumes (V1, V2, V3) using ITK
Snap. This sampling strategy was chosen to ensure that
we had sufficient separation between measured cells. Our
protocol required the placement of a small circular marker
within the cell’s membrane and another marker external to
the membrane (where the cell’s boundary is clearly re-
solved). This generated 30 samples in both V1 and V2 and
89 samples in V3, providing a measurement of intracellu-
lar brightness (signal) and external background (noise).
We then computed the SNR for the ith cell as SNR � 20
log10(si/ni), where si (signal) and ni (noise) are the mean
value of the labeled pixels within and outside of the ith
labeled cell, respectively. The mean and SD of the SNR
(dB) across each subvolume is: V1 � (4.73, 0.69), V2 �
(4.59, 1.49), V3 � (4.49, 1.13). We observed the largest
variance in SNR in V2 and the lowest average SNR in V3,
with training volume V1 possessing the highest mean and
lowest variance SNR in comparison. Our estimates of the
SNR are predictive of the difficulty of the segmentation
task, and therefore correlated with the accuracy of our
segmentation results across a range of neocortical vol-
umes.

X-BRAIN: Methods for segmenting and analyzing X-
ray image volumes

We now provide an overview of the modules and tools
provided in X-BRAIN.

Step 1: Computing probability maps with ilastik
The first step of our segmentation pipeline is to per-

form pixel-level classification on the X-ray images (in
3D) to estimate the probability that a voxel is a cell,
vessel or lies in the background (other). We used a tool
called ilastik, which trains a random forest (RF) classi-
fier using sparse (manual) annotations of class labels in
the data. Ilastik provides an interactive method to com-
pute and examine feature channels; using this interac-
tive mode, we selected a variety of patch-based edge
and texture features at different scales to train a pixel-
level classifier. In general, we found that intensity fea-
tures were too sensitive to fluctuations in brightness
throughout the sample, and the most useful features
were typically the gradient of Gaussian magnitude, dif-
ference of Gaussians (DoG), and the structure tensor
eigenvalues. To produce probability maps, we devel-
oped a python interface to run trained ilastik classifiers
on volumes of X-ray images.
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Step 2: Vessel segmentation
After computing the vessel probability map with ilastik,

we threshold the probability map, dilate the resulting bi-
nary thresholded output, and remove spurious connected
components based on a minimum size threshold. After
applying these simple morphologic filtering operations,
we found that the resulting segmentation has better
agreement with the manually segmented ground truth
than labels produced by a second manual annotator.
Thus it appears that vessel segmentation is a relatively
easy task once the data has been preprocessed with
ilastik.

Step 3: Cell detection method
Although a RF classifier provides a good starting point

for localizing cell bodies, overlapping neurons and vessels
are often hard to distinguish by simply thresholding the
probability map or using other off-the-shelf cell detection
methods such as those provided in ilastik. To separate
these components, we exploit the fact that most cells in
the cortical sample can be well approximated with a
spherical shape. Thus we developed a greedy approach,
which is similar in spirit to matching pursuit algorithms for
sparse signal recovery (Davis et al., 1997), to iteratively
refine our estimate of new cell positions and then “re-
move” newly detected cells from the probability map. At
each step of the algorithm, we apply a 3D fast Fourier
transform to convolve the cell probability map with a
spherical template of diameter roughly equal to that of an
average cell (see Step 4 for more details on how we
selected the template diameter). After convolving the
probability map with the template, we select the global
maxima as the centroid of the next detected cell. After
finding this cell, we then zero out the probability map in
this region to prevent false positives (such that a candi-
date cell in the same location will not be repeatedly
selected). This matching procedure is then repeated until
convergence, defined as the point at which the correlation
between the probability map and our template drops
below a user-specified threshold or reaches the maximum
number of iterations.

Step 4: Hyperparameter searches
We developed a tool to run hyperparameter searches to

maximize the performance of our methods on a densely
annotated ground truth volume (V1). After exploring the
parameter space, we ran a grid search over the most
critical parameters (cell size, dilation, and threshold cutoff)
to find a stable, optimal point. We selected the parame-
ters (cell size 18, dilation 8, threshold 0.47) that maximized
the f1 score. Because voxels on the edge of volumes are
inherently ambiguous in detection for both human and
machine annotators, we choose to disregard these ob-
jects in both detected and truth volumes when computing
precision and recall scores.

Step 5: Nonparametric density estimation
To compute the density of detected cells within a vol-

ume, we applied a k-nearest neighbor (kNN) density esti-
mation algorithm (Loftsgaarden et al., 1965; Póczos and
Schneider, 2011), which estimates the density using only
distances between the samples (cells) and their kth near-

est neighbor. More concretely, we define the distance
between a centroid vector x��3 and a matrix A as

�k�x, A� � �x � ak�2
2 ,

where ak is the kth nearest neighbor to x contained in the
columns of A. The value of the empirical distribution p at
v � �x, y, z� is then estimated using the following consis-
tent estimator (Póczos and Schneider, 2011):

p(v) �
k

N�k�v, V�
,

and V contains the centroids of the rest of the detected
cells in the sample. We compute this quantity over a 3D
grid, where the volume of each bin in the sample grid is
Vol � 8.44 �m3. We selected this bin size to ensure that
detected cells will lie in roughly a single grid point. This
choice was further confirmed by visually inspecting the
resulting density estimates. After computing the density
for each 3D bin in our selected grid, we normalized these
density estimates to obtain a proper probability mass
function. Finally, we computed an estimate of the number
of cells per cubic mm as pd�v� � �p�v�N/Vol� 	 109. The
rationale behind this approach is that in regions with a
higher density of samples, the quantity �k�v i, V� will be
very small, and thus the probability of generating a sample
at this location is large.

Details of experiments on large-scale datasets
After validating and benchmarking our algorithms, we

scaled our processing to the entire dataset of interest (x
voxels, 610–2010; y, 1–2480; z, 390–2014; resolution, 0),
using the processing environment (Rex et al., 2003). Le-
veraging, a distributed pipelining environment, allowed us
to quickly build interfaces to algorithms written by differ-
ent research groups or in different languages to assemble
a cohesive implementation. These algorithms have well-
defined interfaces and can be repackaged for use in a
different meta-scheduler environment. When running at
scale, we first divided our large data volume into small
cuboids meeting our computational constraints. A spatial
database was used to get and store data; image data
were requested for each computed block, and the results
were written to a spatially coregistered annotation chan-
nel (Burns et al., 2013; Kleissas et al., 2016). Each block
was retrieved with sufficient padding to provide edge
context; we processed these blocks in a parallel fashion
and uploaded the resulting detections. We also imple-
mented an alternative merging strategy to account for
cells near boundaries, by eliminating putative detections
that touch a block edge or overlap with existing objects in
the spatial database. This was implemented to further
reduce edge effects and thereby minimize the possibility
of false positives.

Axonal reconstruction
To segment small branches of myelinated axons, we

applied the same preprocessing steps as before and
trained a new ilastik classifier to segment blood vessels,
cells, and axons from background. After retraining the
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classifier to segment axons, we applied the ilastik classi-
fier to the same small 333 � 333 � 130-�m volume and
applied the same techniques previously used for vessel
segmentation to segment the axons in the sample. We
thresholded (p � 0.3), eroded, and dilated the axonal
probabilities using a spherical structuring element of size
4, and then applied a connected component algorithm to
label each connected component with a different ID.

Data accessibility and reproducibility
All of our algorithms, data, and data derivatives are

open source and available for those in the neuroscience
community to reproduce and leverage for further scientific
discovery. Both our raw data and its derivatives are freely
available for download and visualization (nerdslab.githu-
b.io/xbrain). To facilitate reproducibility, scripts to down-
load data and annotations and generate the figures from
this article are provided in both Matlab and Python. To
create the 3D visualizations described, we relied on a
script that interacts with the spatial database and pulls
down an .obj file suitable for processing with the open-
source Blender tool.

Results
X-ray tomography of a millimeter-scale brain sample

Using the 2-BM synchrotron beamline at APS (De Carlo
et al., 2014), we obtained tomography data from a volume
of neocortex (Fig. 1) prepared using methods compatible

with subsequent large-volume EM (Tapia et al., 2012; see
Methods). Stacks of projection images were acquired by
rotating the sample (Fig. 1a) at 3000 uniformly spaced
angles from 0 to 180 degrees and measuring the propa-
gation of X-rays through the sample at each rotation angle
(Fig. 1b). Radiographs are recorded with an indirect de-
tection system consisting of a thin scintillator that con-
verts the transmitted X-rays into visible light (Fig. 1c). The
light is then focused by an objective lens on a charged
coupled detector (CCD) array, producing images with
equivalent pixel size of 0.65 �m2 at the sample plane.
Collecting the dataset studied in this paper (10.6 Giga-
voxels) took �6 min. To obtain high-contrast images, data
acquisition was performed in propagation-based phase
contrast mode by increasing the distance between the
detector and sample to several tens of centimeters and
imaging with a pink beam (�E/E � 10–2) set to 30 keV. To
reconstruct a 3D image volume from the projection data,
phase retrieval was performed on each projection using
the well-established Paganin algorithm (Paganin et al.,
2002; Weitkamp et al., 2011), followed by volume recon-
struction using the open source TomoPy package (Gür-
soy et al., 2014). The resulting image volume provides the
data for our segmentation and analysis methods.

To quantify the resolution of our reconstructed X-ray
image volumes, we obtained digitally vignetted subfields
from regions with brain tissue (signal) and without (back-
ground) and computed their respective 2D Fourier power

Fig. 1. Synchrotron X-ray tomography of a millimeter-scale brain sample. A schematic illustration of the imaging setup is displayed
along the bottom: from left to right, the synchrotron X-ray source interacting with an embedded sample of somatosensory cortex as
it is rotated during the collection of multi-angle projections. To collect this projection data, X-rays are passed through a scintillator
crystal that converts the energy into visible light photons. These photons are then focused onto a light camera sensor, before a
sinogram is generated via data collection from a row of sensor pixels. In the three panels above, visualizations of the neocortical
sample preparation (a), location of the mounted sample within the instrument (b), and conversion and focusing of X-rays into light
photons (c).
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spectra (see Methods for further details). This power
spectral analysis reveals nearly isotropic resolution and an
effective resolution of 1.2 �m. At this resolution, X-ray
images allow resolving the putative location and size of
cell bodies and their nuclei, blood vessels, and segments of
large neurites (Fig. 2a,b). We estimate that voxels inside cells
are on average 4.56 � 1.13 dB (mean � SD) brighter than
voxels in the immediate surrounding region (see Methods).
At this contrast level, the location and size of cells in the
sample can be unambiguously resolved. Blood vessels are
equally visible in this sample and provide even greater con-
trast than cell bodies, making them highly accessible for
quantification. This high signal-to-background strength jus-
tified the capacity to segment the sample into cell bodies

and blood vessels, which we validate with our automated
techniques.

After collecting �CT data, we performed ultrathin sec-
tioning and EM on the same sample. EM confirmed the
identity of the cell bodies and their nuclei, blood vessels,
and large neuronal processes observed in the �CT data-
set (Fig. 2c). These data strongly support our observations
that the structures identified in the X-ray dataset are
anatomically authentic and not spurious consequences of
the X-ray imaging pipeline. In addition, there were no
deformations in the microtome sectioning properties of
the Epon-embedded brain tissue, nor any obvious signs
of irradiation-induced structural damage in the scanning
electron micrographs obtained from these sections.

blood vesselcell body dendrite xz yzxy

2 µm

c

a

micron-scale (X-ray) nanoscale (EM)

100 µm

b

cell bodies

blood vessels

dendrite

nucleus

x

y

z

Fig. 2. Synchrotron X-ray imaging provides micron resolution within a neocortical volume. a, Microscopic visualization of cells, blood
vessels, and dendrites within an X-ray–imaged volume of somatosensory cortex. Each panel shows one of three perspectives within
the xyz coordinate framework (panels to the right are 11.5 �m wide, large panel to the left is 100 �m wide). b, Digital rendering of a
manually reconstructed subset of blood vessels and cell bodies (nuclei highlighted) selected from within the neocortical volume. c,
Photomicrographs of a subvolume within this sample, using �CT and EM to identify overlapping regions. These images were collected
at three different pixel sizes (0.65 �m, 100 nm, 3 nm). In the left panel, a subset of a single virtual slice from an X-ray tomogram that
spans the neocortical volume (0.65 �m pixel size). Outlined in blue to the right of this is a subset of the volume (within a) that highlights
a configuration of three cell bodies and distinct proximal microvessels. This sample was subsequently serially sectioned and imaged
in a scanning electron microscope. These cells are located in the EM dataset (inset), the ultrastructure of which is well preserved, even
after �CT (right in red).
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Structures such as synapses and mitochondria remain
clearly evident (Fig. 2c). We anticipated the preservation
of cellular architecture, given our calculated radiation
dose of �3 kGy during the collection of the X-ray tomog-
raphy data. This dose is well below the dose affecting the
dissolution rate of radiation-sensitive polymers such as
poly(methyl methacrylate) (PMMA; Zhang et al., 1995;
1000 kGy), and the dose at which glutaraldehyde-fixed
wet chromosomes start to show mass loss (Williams et al.,
1993; 70 MGy). Our results confirm that �CT and EM can
be integrated to produce a multiresolution reconstruction
of a neocortical volume.

Any high-quality anatomic dataset should permit one to
reliably annotate structures of interest. We thus measured
human annotator performance in the localization and la-
beling of cell bodies and blood vessels in multiview pro-
jections (orthogonal 2D projection planes) of the 3D image
data. Two expert annotators (A0 and A1) were instructed
to label the boundaries of every cell and vessel within a
small volume (100 �m3) of X-ray image data using ITK-
Snap, an open-access software tool used to annotate 3D
images (Yushkevich et al., 2006). When provided with 3D
context, pixel-level agreement (precision, recall) between
annotators of the cell bodies and blood vessels was
(p,r) � (0.835,0.76) and (p,r) � (0.85,0.73), respectively
(see Methods). We further measured the consistency of
annotator’s ability to localize centroids of cell bodies and
found nearly perfect agreement (p,r) � (1,0.989). Although
precise manual segmentation of cell body boundaries and
vessels remains challenging, we observed high interrater
reliability between annotations of the centers of cell bod-
ies. This demonstrates that human performance on the
detection task is nearly identical and suggests that our
X-ray–generated dataset is of sufficient quality to be seg-
mented using automated methods.

Automated methods for segmentation and cell
detection in X-ray volumes

Although annotators A0 and A1 manually reconstructed
a subvolume of our sample with a high degree of accu-
racy, complete datasets afforded by X-ray tomography
remain overwhelming in magnitude and density. It is
therefore inefficient to densely reconstruct these datasets
solely using human input. To analyze large-scale X-ray
datasets, we developed automated 3D segmentation al-
gorithms to extract cells and vessels from the resulting
X-ray image volumes. We created a suite of tools for
extracting and visualizing mesoscale maps from stacks of
X-ray images (Fig. 3). This toolkit, which we call X-BRAIN
(X-ray Brain Reconstruction, Analytics, and Inference for
Neuroanatomy), consists of image processing and com-
puter vision methods for preprocessing and artifact re-
moval, vessel segmentation, and estimation of cell size
and location. We also provide methods for large-scale
statistical analyses for the resulting reconstructed cell and
vessel maps. Matlab and Python code, manual annota-
tions, and image data are openly available through nerd-
slab.github.io/xbrain, providing a community resource for
the automated segmentation and quantification of me-
soscale brain anatomy.

After finding the centroids of all detected cells, we can
efficiently estimate their sizes. To do this, we center a
small spherical template at the detected center of each
cell and estimate the cell size by increasing the size of the
template. When the template can no longer be inscribed
within the cell body, we observe a sharp decay in the
correlation. Thus we compute the correlation between
the probability map while increasing the diameter of the
spherical template, find the maximum decrease in corre-
lation, and select this corresponding diameter as our
estimate of the cell size. This operation has low complex-
ity and can be performed on the entire dataset (50,000
cells) on a single workstation. Once cells have been de-
tected, estimating the diameter of the cell body is a simple
one-dimensional fitting problem.

Our main image processing and computer vision pipe-
line (Steps 1–2 in Fig. 3) consists of methods for segment-
ing blood vessels and detecting the location and size of
cells in the volume. In the initial step of our workflow, we
train a classifier to predict the probability of brain voxels
belonging to each of the three classes: cell body, blood
vessel, and background (other). To do this, we use the
interactive learning and segmentation toolkit ilastik to
sparsely annotate the dataset and build a random forest
classifier using intensity, edge, and gradient features
computed on the image volume (Sommer et al., 2011).
This classification procedure returns three probability
maps P � �Pc, Pv, Pbg�, which collectively provide the
probability tuple p�x, y, z� � �Pc�x, y, z�, Pv�x, y, z�, Pbg

�x, y, z�� that each voxel whose position is denoted by
(x,y,z), is a cell, vessel, or lies in the background (output of
ilastik in Step 1 of Fig. 3, see Fig. 4). This classification
procedure provides an accessible and intuitive way to
generate an estimate of which voxels correspond to cell
bodies and blood vessels.

The simplest way to convert a probability map to a
(binary) segmentation is to threshold the probabilities and
label each connected component as a discrete object. In
the case of vessel segmentation, we successfully use this
procedure with minimal tweaks. To segment vessels in
the sample, we threshold the vessel probability map and
then apply simple morphologic filtering operations to
clean and smooth the resulting binary data (see Methods).
Visual inspection and subsequent quantification of preci-
sion and recall of vessel segmentation (Fig. 5a) suggest a
high degree of accuracy through this simple postprocess-
ing of the ilastik outputs.

Applying the same thresholding procedure used for
vessel segmentation to the segmentation of cells is prob-
lematic, as neurons and blood vessels are often densely
packed in neocortex. The complicated nature of segment-
ing densely packed data is not trivial (Qi et al., 2012).
Therefore, we developed an algorithm for cell detection
(Step 2 in Fig. 3) that produces estimates of the centroids
and radii of detected cells. Our method iteratively selects
a new candidate centroid based on the correlation be-
tween the cell probability map and a (fixed-radius) spher-
ical template. We use a frequency-based approach to
convolve a spherical template with the cell probability
map and greedily select “hot spots” that are likely to
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contain cell bodies (see Methods). Our method leverages
prior biological knowledge of the approximate size and
spherical shape of cells to select spherelike objects from
the prefiltered probabilities to resolve situations where
neurons appear in close proximity to one another.

Performance evaluation
Understanding the stability and performance of our

segmentation method is critical for assessing the accu-
racy of the maps provided by our approach. Using a
densely annotated training dataset (V1), we performed a

Spatial Database

sparsely labeled training data

3D image stacks

densely labeled training data

hyperparameter
optimization

segment vessels

Step 1. Segmentation

Step 2. Cell Detection

detected cells overlaid on image

cell body

vessel

X-ray image probability map after convolution

Fig. 3. Image processing and computer vision pipeline for segmentation and cell detection. Block diagram displaying the entire
X-BRAIN workflow is described. The integration of sparsely labeled training data into our segmentation module (Step 1) is used to train
a random forest classifier using ilastik. Densely annotated training data are used to perform hyperparameter optimization to tune our
cell detection algorithm in Step 2. The final map of detected cells is displayed at the bottom of Step 2, with detected cells overlaid
on the original X-ray image. Solid arrows, inputs into a module; dashed arrows, outputs; filled circle terminal, outputs that are stored
in the spatial database.
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grid search to find the set of hyperparameters (e.g.,
threshold parameters for cell/vessel detection, the size of
spherical template, and stopping criteria) that maximized
a combination of the precision and recall (f score) be-
tween our algorithm’s output and manually annotated (A0)
data from the training volume (Fig. 5a). After tuning our
cell detection algorithm to find the best set of hyperpa-
rameters, we obtained a precision and recall of (p,r) �
(0.86,0.84). The results of our hyperparameter search sug-
gest that our methods are stable and provide good per-
formance across a range of parameters.

To verify that our segmentation algorithm generalizes
across regions previously unseen during classifier train-
ing, we labeled and tested our cell detection algorithm on
two additional test cubes, V2 and V3 (Fig. 5b,c), that are
spatially independent from V1 and each other (see Meth-
ods as well as Table 1 for more information about training
and test volumes). V2 served an initial test set, as we
added some sparse training data from this volume to train
our ilastik classifier. V3 served as a held-out test set, as
the location of this cube was unknown before tuning and
running the algorithm on the entire dataset. After obtain-
ing ground truth labels via manual annotation provided by
A0/A1, we ran X-BRAIN on both V2 and V3 using the set
of parameters selected by optimizing our method on V1.
The precision and recall is given by (p,r) � (0.83,0.76) and
(0.94,0.78), for V2 and V3, respectively. These results
show that our approach for hyperparameter optimization
can be used to obtain accurate cell detection perfor-
mance when applied to new regions in the sample.

Fluctuations in brightness make the segmentation of
X-ray volumes more difficult. To understand the relation-
ship between these fluctuations and the difficulty of the
cell detection problem, we computed the SNR at multiple
points within each of the labeled volumes. The mean and
SD of the SNR (in dB) between cells and their background
in all three volumes was V1 � (4.73, 0.69), V2 � (4.59,
1.49), and V3 � (4.49, 1.17). As expected, the precision
and recall (for cell detection) appear to be correlated with

the variance of the SNR in the volume. We obtain high
precision and recall for V1 and V3, and indeed, these
volumes exhibit smaller variance in their contrast between
cells and their background. Even with of fluctuations in
brightness, our results and sensitivity analysis on training
and test volumes suggest that X-BRAIN generalizes well
across different regions of the volume.

Large-scale analysis and visualization
To apply X-BRAIN to large datasets, we created an

analytics workflow that uses the LONI Pipeline environ-
ment (Rex et al., 2003) to automatically distribute jobs
across a cluster environment. Our workflow is parallelized
by dividing the dataset into small data blocks that can be
processed independently, based on a user-specified
graphical (xml-based) description of the dependencies
between various algorithms. Running our analytics pipe-
line on a cubic millimeter-scale sample took �6 h on a
small 48-core cluster (see Methods). As a result, we de-
tected 48,689 cells over the extent of the analyzed sample
(2560 � 2560 � 1624 voxels). Furthermore, when we
visually inspect our large-scale results (Fig. 6), we find a
good correspondence between cells and vessels that are
visible to human annotators and those detected by our
algorithms. Our initial results on this training volume and
visual inspection of the results on the whole sample (Figs.
6 and 7) suggest that our methods provide reliable maps
of the cells and vessels in the sample.

One advantage of having isotropic resolution is that we
can obtain cell counts and densities in three dimensions.
To estimate the 3D density of cells, we applied a robust
nonparametric approach for density estimation. Adopting
a nonparametric approach enables us to obtain an accu-
rate estimate of the distribution without making any re-
strictive assumption on its form. In particular, we rely on
the popular kNN density estimation algorithm (Lofts-
gaarden et al., 1965; Póczos and Schneider, 2011), which
estimates a distribution using only distances between the
samples (cells) and their kth nearest neighbor. When

vessel probabilities cell probabilities

cell probabilities/
detected cells

detected cells/
blood vesselsX-ray microCT image

Fig. 4. Visualization of X-ray image data, overlaid probability maps, and final segmentations. On the left, an X-ray micrograph. On the
right, clockwise from upper left: vessel probabilities, cell probabilities, cell probabilities and segmentations, and the segmentations
of cells and vessels.
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Fig. 5. Automated methods for segmentation and cell detection reveal dense mesoscale brain maps. a, Performance of vessel
segmentation and cell detection methods, as hyperparameters that affect the performance of the method, are varied. To optimize
performance of the vessel segmentation method, the f2 score is computed—emphasizing recall—for multiple operating points (each
curve represents a fixed parameter set with a varying vessel segmentation threshold). To measure performance for cell detection, the
f1 score—balancing precision and recall—is calculated for multiple operating points as the stopping criterion is increased (x axis) in
the greedy cell finder algorithm. Highlighted curves within each plot and the accompanying “star” indicate optimal hyperparameter
performance. b, Results of cell detection and vessel segmentation algorithms on manually annotated test datasets. The training
volumes V1 (195 � 195 � 65 �m and V2 (130 � 130 � 65 �m) and test volume V3 (130 � 130 � 130 �m) are visualized within the
entire volume of X-ray–imaged tissue. c, Training volumes V1 and V2 and test volume V3 individually visualized. In each manually
annotated subvolume, the results of X-BRAIN are overlaid, based on the best operating point selected by the parameter optimization
approach in a. The precision (p) and recall (r) values for each subvolume are further annotated.
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applied to the entire volume of our sample, we calculated
an average density of 1.3 � 105 cells per mm3 (Fig. 7).
These results are comparable to other studies that esti-
mate an average of 1.2–2.5 � 105 cells per mm3 in mouse
neocortex (Tsai et al., 2009), both in terms of our average
and the spread of the distribution. Our large-scale analy-
sis provides further evidence that our X-ray pipeline pro-
vides accurate estimates of the location and distribution
of cells within the sample.

The relative location of cell bodies to each other and
vasculature is integral for studying diseases that afflict the
brain, particularly in traumatic brain injury and stroke
(Werner and Engelhard, 2007; Tsai et al., 2009; Lapi and
Colantuoni, 2015). To provide researchers with the tools
to quantify these data, we developed automated methods
to compute distances between detected cell centers
(cell-to-cell distances) and distances between each cell
and the closest segmented vessel (cell-to-vessel dis-

Table 1. Statistics of cell counts in manually and automatically labeled volumes

Annotation Cells, n Area Volume (% of mm3) Density (105/mm3)
V0-A0 97 (2136, 2060) 0.06 1.63
V0-A1 96 (1489, 1499) 0.06 1.28
V0-Xbrain 94 (1983, 2123) 0.06 1.57
V1-A0 321 (1997, 2035) 2.5 1.28
V1-Xbrain 302 (1983, 1963) 2.5 1.21
V2-A12 103 (1416, 1301) 0.06 1.72
V2-Xbrain 112 (1918, 1963) 0.06 1.87
V3-A03 281 NA 0.2 1.41
V3-Xbrain 240 (1419, 1385) 0.2 1.20
Vtot-Xbrain 48, 689 (1454, 138) 42 1.02

The first column of the table displays the name of the volume (V0, V1, V2, and V3) as well as the annotator: manual annotator (A0, A1, A2, A3) or automated
annotation (X-BRAIN). In the second and third columns, the number of detected cells and the area (mean, median) of annotated cell bodies (number of la-
beled voxels) are described. Volumes (percentage of cubic millimeters) of all the reported subvolumes are in the fourth column. Finally, we report the density
of each subvolume in the fifth column. Note that V0, V1, and V2 are all manually annotated volumes used to train and tune our automated methods. V3 is a
held-out test set whose location was unknown during training and tuning the parameters of the algorithm. NA, not applicable.

segmented
blood vessels

with detected cell bodies

a

b

Fig. 6. Visualization of 3D reconstructions of the neural architecture within a millimeter-scale neocortical sample. a, Renderings of the
vessel segmentation algorithm output across the depth of the entire analyzed sample. b, Visual perspective of the cell detection
algorithm output integrated with renderings from vasculature displayed in a, with hatched inset showing the same subset of both
neurons and vessels.
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tances, Fig. 7). Cell-to-vessel distances are spread be-
tween 10 and 40 �m, with very few cells exceeding this
distance (34.3 � 533.4 �m). In contrast, cell-to-cell dis-
tances appear to be much more concentrated, with a
strong peak at 12.7 �m and much smaller variance
(21.3 � 43.1 �m). The distribution of distances between
cells and vessels (Fig. 7) aligns with previous results
(Tsai et al., 2009; Wu et al., 2014) and confirms the
accuracy of our approach. We further estimated that
the fractional volume of vessels in the sample as
1.85%, which is in agreement with ranges provided in
previous studies (Heinzer et al., 2006; Tsai et al., 2009;
Wu et al., 2014). Collectively, our findings reveal the
proximity of cells and vasculature within a dense sub-
sampling of the somatosensory cortex.

To complement our suite of analytical tools, we devel-
oped methods to produce and visualize mesoscale maps
with cellular density and vasculature as their output (Figs.
4 and 7). After running a sample through our pipeline,
users can obtain different descriptions of the neuroanat-
omy combined with the image data to help reveal relevant
structures in their output. Using these tools, the user can
easily interrogate subvolumes of the data both quantita-
tively and qualitatively. As an illustrative result, we identi-
fied a 3D region of interest comprising deep layers of the
somatosensory cortex (see Fig. 7). We confirmed the
validity of this structure using multiple avenues: 3D visu-
alizations, X-ray micrographs, cell probability maps, and
estimate of cellular density. Each of these representations
provide detailed information and descriptions of the data

Fig. 7. Spatial statistics of X-ray volumes reveal layering and spatially diverse distribution of cell bodies. Top right, histograms of the
estimates of the cell density over the extent of the entire sample of mouse cortex, distances between the center of each cell and its
nearest neighbor (cell-to-cell distances), and distances between the center of each cell and the closest vessel voxel (cell-to-vessel
distances). Top left, 3D rendering of the detected cells and vessels in the entire sample, with a manually labeled cube (V1) highlighted
in blue. To confirm the 3D structure of this visualization (bottom left), confirmation is provided in the maps provided to the right: cell
probability (red indicating high probability), detected cells (each detected cell displayed in a different color), and density estimates
(bright yellow indicating high density). These results provide further confirmation that the 3D structure of the sample is preserved
within our density estimate.
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that can be used to further visualize and quantify neuro-
anatomical characteristics. Our ability to produce maps
and generate reconstructions that integrate neuronal cy-
toarchitecture and vasculature provides neuroscientists
with a unique approach to examine neural substrates.

Axonal reconstruction and tracing
Mapping long-range, myelinated axons remains an in-

tegral feature of traditional neuroanatomical methods. A

subset of myelinated axons was found within the corpus
callosum at the base of our sample, providing another
opportunity to perform automated and manual segmen-
tation. To produce these automated results, we used our
pipeline to rapidly retrain an ilastik classifier to segment
blood vessels, cell bodies, and axons from tissue back-
ground (see Movie 1 and Fig. 8a). We then applied our
approach for vessel segmentation selectively to the data-
set’s axons, which were compared to the findings of
human annotators (Fig. 8b). These results are visually
similar, with a greater number of axons detected by the
automated approach relative to human annotators (com-
pare lower panels of Fig. 8a and b). These preliminary
findings are unfortunately constrained by the nature of the
sample dissection, which has limited the number of axons
accessible for reconstruction. When provided with sam-
ples with greater axonal density, we anticipate that our
pipeline will be able to produce maps of finely traced
axons.

Discussion
Here we describe the use of synchrotron-based �CT to

efficiently resolve the microstructure (cells, vasculature,
and myelinated axons) within a millimeter-scale neocorti-
cal sample. Through the integration of traditional and
modern anatomic approaches, we have quantified and
further validated our �CT generated data. Specifically,
we conducted tests of interrater reliability followed by
machine-learning methods to segment this data, gener-
ating high-quality reconstructions of the sample volume.
We have provided our entire suite of open-access re-
sources for the neuroscience community to perform their
own �CT neuroimaging data analysis. Finally, we tested
our pipeline’s ability to identify myelinated axons and

Movie 1. Myelinated axons, cells, and blood vessels in a small
subvolume of neocortex. Each frame of the movie represents a
virtual slice through the unsectioned volume, where the pixel size
is 0.65 �m isotropic. To create each false-color image in the 3D
stack, the raw probability maps for cells and blood vessels are
stacked into the image’s green and blue channels, respectively.
To visualize myelinated axons of the sample, the probability map
is thresholded, and a small fraction of components are removed
and then added to the red channel of the image (see Fig. 8a for
a 3D rendering of these axonal segments). [View online]

automated segmentation

a

manual annotations

b

Fig. 8. Axonal reconstructions obtained through manual and automated methods yields high agreement. Segmented outputs are
overlaid onto X-ray neocortical images (xy, xz, yz planes in the upper panels) and reconstructed in the lower panels for the proposed
automated segmentation method (a) and manual annotations (b).
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compared this data to manual annotations. Our prelimi-
nary findings reveal highly similar reconstructions, which
can be expanded on with future densely myelinated da-
tasets. Collectively, our findings showed that automated
algorithms can be applied to �CT datasets to rapidly
compute3D brain maps with submicron resolution.

The experimental protocol we developed can be used
to conduct both �CT and automated EM imaging (Tapia
et al., 2012) within the same brain sample. We demon-
strate that uniting these techniques provides complemen-
tary images of a neocortical volume, without requiring any
modification to existing EM preparation protocols. �CT
has been previously used with EM in the assessment of
sample quality (Bushong et al., 2015; Ng et al., 2016),
finding regions of interest to be later investigated at higher
resolution (Karreman et al., 2017), and in the alignment
and mapping of functional calcium imaging data onto
single cells (Bleckert et al., 2016). Whereas these methods
focused primarily on the use of X-rays to aid in the anal-
ysis of EM data, our work focused on producing high-
quality and automated mesoscale maps using X-rays. The
dense mesoscale maps afforded by X-BRAIN will further
facilitate integration of data generated by X-ray and EM,
thereby improving and augmenting approaches for corre-
lating these imaging methods.

The algorithms we developed to parse �CT datasets
provide high precision and recall, thereby suggesting that
our segmentation and cell detection methods can be used
to rapidly and reliably survey data volumes in the local-
ization of cells and vasculature. Thus information about
the location and size of cells and vessels, obtained
through X-ray image analysis, can be used to improve the
alignment of EM datasets and also facilitate merging 2D
outputs from segmented EM images (Gray Roncal et al.,
2015). Because our open-access pipeline for X-ray image
analysis has been integrated using community standard
tools and approaches, we can readily combine existing
EM analysis pipelines with our methods to analyze a
dataset imaged using �CT and EM. These results can be
combined to create a multimodal brain map, one provid-
ing information about the cytoarchitectural and cerebro-
vascular properties of a sample, as well as the fine-scale
details afforded by EM (e.g., neuronal processes and
synapses).

Our segmentation and analysis tools have been devel-
oped for analyzing X-ray datasets designed to be com-
patible with EM. However, we developed this pipeline to
be modular and easily applied to datasets from varying
imaging conditions. By simply retraining the classifier on a
new dataset, our analytics pipeline can be readily applied
to analyze other sample preparations for X-ray (Fratini
et al., 2015; Hieber et al., 2016), as well as low-resolution
EM and other light microscopy approaches. Moreover,
because our cell detection method is designed to resolve
individual cells that can be tightly packed in cortex (1- to
2-�m separation), we expect that our methods can be
beneficial in the analysis of other densely packed brain
areas such as the granular layer in cerebellum. We believe
the computational methods presented here could provide
a scalable approach for analyzing dense reconstructions

of the brain’s microstructure across a variety of different
imaging conditions and modalities.

Within our neocortical sample, we have resolved nuclei
and large cellular processes such as apical dendrites (Fig.
2a,b). This data can be used to discern whether a cell is
indeed a neuron (as opposed to a glial cell). However, to
use �CT to reliably identify cell types, the resolution of
�CT must be enhanced toward the nanometer scale to
permit the resolution of cellular morphology (Peng et al.,
2015). To complement this kind of classification, trans-
genic or immunohistochemical approaches that label dis-
tinct neuronal and nonneuronal cell types for �CT must
also be developed (Ng et al., 2016). By integrating these
approaches in future �CT studies, we can enhance the
resolution of reconstructed volumes while providing cel-
lular identification, thereby enabling a more detailed com-
prehension of brain architecture.

The resolution of �CT is currently limited, as radiation
dose increases quadratically with image resolution (How-
ells et al., 2009). Thus as we increase the resolution, beam
damage can induce changes in sample geometry while
the tomogram is being acquired, leading to reconstruction
artifacts and the degradation of spatial resolution. How-
ever, the effect of radiation damage is greatly reduced in
cold samples. Thus X-rays have the potential for sub–
30-nm resolution 3D imaging of frozen hydrated brain
biopsies (Deng et al., 2015) with no chemical modification
or plastic embedding. In addition to cooling the sample,
additional imaging parameters including photon energy,
coherence, and optics can also be optimized to minimize
damage to a specimen while increasing image resolution.
These imaging parameters can be adjusted to optimize
�CT to resolve finer-scale processes and the morphology
of neurons.

Limited ground truth data currently restricts the com-
plexity of methods that we can apply to solve our seg-
mentation problem. With more training data from human
annotators, we can leverage more sophisticated nonlinear
classification strategies such as convolutional neural net-
works for segmentation and axon tracing. These ap-
proaches have been shown to achieve state-of-the-art
performance in the identification of synapses and seg-
mentation of cell bodies in EM data (Gray Roncal et al.,
2015; Turaga et al., 2010). Finally, improvements in the
spatial resolution of tissue samples will aid in the chal-
lenge of resolving adjacent neural structures as separate
objects, thereby leading to more efficient and robust ap-
proaches for cell detection.

Standardized atlases that characterize the macroscale
organization of the brain, such as Brodmann maps (Zilles
and Amunts, 2010), have been based primarily on neuro-
anatomists working with thin, sparsely labeled brain sam-
ples. However, with developments in large-scale EM
connectomics (Helmstaedter et al., 2011; Gray Roncal
et al., 2015) and the techniques we present here for �CT,
far larger and more comprehensive datasets are possible
at a scale previously unachieved. Indeed, it is possible to
scale up �CT imaging to large volumes of human brain
tissue, such as the cerebellum and frontal cortex (Mizutani
et al., 2010b; Hieber et al., 2016). Furthermore, the capa-
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bilities of �CT combined with staining approaches for
entire brain preparations (Mikula and Denk, 2015) offer the
possibility of imaging whole brains at submicron resolu-
tion. With these capabilities, generating whole brain maps
in a modern data-driven fashion will soon be possible,
thereby enabling the massive-scale quantification of the
effects of disease, development, and learning in the brain.
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